英国威廉希尔体育公司_WilliamHill-中文官网

Content
Wang Dongdong
Publish Date:2015/06/11 Views:

B916?e=.jpg

Dongdong Wang, Professor

 

Education:

Ph.D., Civil Engineering, University of California, Los Angeles, 2003

Professional Experience:

2004-, Department of Civil Engineering, Xiamen University

Research Interests:

Computational Mechanics, Meshfree Method, Finite Element Method, Isogeometric Analysis, Structural Engineering and Structural Mechanics.

Honors and Awards:

l  Du Qinghua Medal of Computational Methods in Engineering, 2019

l  ICACM Award, International Chinese Association of Computational Mechanics, 2018

l  ICACM Computational Mechanics Award, International Chinese Association of Computational Mechanics, 2016

l  Xiamen Municipal Excellent Teaching Award, 2016

l  ICACM Fellow Award, International Chinese Association of Computational Mechanics, 2013

l  Qian Lingxi Young Investigator Award of Computational Mechanics, 2012

l  Excellent Young Researcher Fund, National Natural Science Foundation of China, 2012

l  ICACM Young Investigator Award, International Chinese Association of Computational Mechanics, 2011

l  New Century Excellent Talents in University, China Education Ministry, 2009

l  Qingyuan Prize, Xiamen University, 2008

l  APACM Young Investigator Award, Asian-Pacific Association of Computational Mechanics, 2007

l  Outstanding Ph.D. Award, Department of Civil and Environmental Engineering, University of California, Los Angeles, USA, 2004

l  Finalist, The 14th Robert J. Melosh Competition for the Best Student Paper on Finite Element Analysis, Duke University, USA, 2002

 

Publications

1.     Book Chapter

l  Wang D., Fang L. and Xie P., “Multiscale asymptotic homogenization of heterogeneous slab and column structures with three dimensional microstructures”, Handbook of Micromechanics and Nanomechanics, Pan Stanford Publishing Co., 2013, Chapter 28: 1067-1109.

2.     Journal Articles

l  Wu J. and Wang D., “An accuracy analysis of Galerkin meshfree methods accounting for numerical integration”, Computer Methods in Applied Mechanics and Engineering, 375: 113631, 2021.

l  Wang D., Wang J. and Wu J., “Arbitrary order recursive formulation of meshfree gradients with application to superconvergent collocation analysis of Kirchhoff plates”, Computational Mechanics, 65: 877-903, 2020.

l  Lin Z., Wang D., Qi D. and Deng L., “A Petrov-Galerkin finite element-meshfree formulation for multi-dimensional fractional diffusion equations”, Computational Mechanics, 66: 323-350, 2020.

l  Wu J., Wang D., Lin Z. and Qi D., “An efficient gradient smoothing meshfree formulation for the fourth-order phase field modeling of brittle fracture”, Computational Particle Mechanics, 7: 193-207, 2020.

l  Wang J., Wu J. and Wang D., “A quasi-consistent integration method for efficient meshfree analysis of Helmholtz problems with plane wave basis functions”, Engineering Analysis with Boundary Elements, 110: 42-55, 2020.

l  Li X., Wang D., Xu X. and Sun Z., “Superconvergent isogeometric transient analysis of wave equations”, International Journal of Structural Stability and Dynamics, 20: 2050083, 2020.

l  Wang D. and Wu J., “An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature”, Computer Methods in Applied Mechanics and Engineering, 349: 628-672, 2019.

l  Wang D., Pan F., Xu X. and Li X., “Superconvergent isogeometric analysis of natural frequencies for elastic continua with quadratic splines”, Computer Methods in Applied Mechanics and Engineering, 347: 874–905, 2019.

l  Wang D., Wang J., Wu J., Deng J. and Sun M., “A three dimensional two-level gradient smoothing meshfree method for rainfall induced landslide simulations”, Frontiers of Structural and Civil Engineering, 13: 337–352, 2019.

l  Qi D., Wang D., Deng L., Xu X. and Wu C.T., “Reproducing kernel meshfree collocation analysis of structural vibrations”, Engineering Computations, 36: 734-764, 2019.

l  Wang D., Wang J. and Wu J., “Superconvergent gradient smoothing meshfree collocation method”, Computer Methods in Applied Mechanics and Engineering, 340: 728-766, 2018.

l  Lin Z. and Wang D., “A finite element formulation preserving symmetric and banded diffusion stiffness matrix characteristics for fractional differential equations”, Computational Mechanics, 62: 185-211, 2018.

l  Lin Z., Liu F., Wang D. and Gu Y., “Reproducing kernel particle method for two-dimensional time-space fractional diffusion equations in irregular domains”, Engineering Analysis with Boundary Elements, 97: 131-143, 2018.

l  Wu J., Wang D. and Lin Z., “A meshfree higher order mass matrix formulation for structural vibration analysis”, International Journal of Structural Stability and Dynamics, 18: 1850121, 2018.

l  Wu C.T., Wu Y., Liu Z. and Wang D., “A stable and convergent Lagrangian particle method with multiple nodal stress points for large strain and material failure analyses in manufacturing processes”, Finite Elements in Analysis and Design, 146: 96-106, 2018.

l  Wang D., Liang Q. and Wu J., “A quadrature-based superconvergent isogeometric frequency analysis with macro-integration cells and quadratic splines”, Computer Methods in Applied Mechanics and Engineering, 320: 712-744, 2017.

l  Zhang H. and Wang D., “Reproducing kernel formulation of B-spline and NURBS basis functions: A meshfree local refinement strategy for isogeometric analysis”, Computer Methods in Applied Mechanics and Engineering, 320: 474-508, 2017.

l  Bigoni F., Bigoni D., Misseroni D. and Wang D., “Megalithic stone beam bridges of ancient China reach the limits of strength and challenge size effect in granite”, Journal of Cultural Heritage, 26: 167-171, 2017.

l  Wang D., Li X. and Pan F., “A unified quadrature-based superconvergent finite element formulation for eigenvalue computation of wave equations”, Computational Mechanics, 59: 37-72, 2017.

l  Wang D. and Wu J., “An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods”, Computer Methods in Applied Mechanics and Engineering, 298: 485-519, 2016.

l  Wang D., Liang Q. and Zhang H., “A superconvergent isogeometric formulation for eigenvalue computation of three dimensional wave equation”, Computational Mechanics, 57: 1037-1060, 2016.

l  Wu Y., Wang D., Wu C.T. and Zhang H., “A direct displacement smoothing meshfree particle formulation for impact failure modeling”, International Journal of Impact Engineering, 87: 169-185, 2016.

l  Dong B., Li C., Wang D. and Wu C.T., “Consistent multiscale analysis of heterogeneous thin plates with smoothed quadratic Hermite triangular elements”, International Journal of Mechanics and Materials in Design, 12, 539-562, 2016.

l  Wu C.T., Wang D. and Guo Y., “An immersed particle modeling technique for the three-dimensional large strain simulation of particulate-reinforced metal-matrix composites”, Applied Mathematical Modelling, 40: 2500-2513, 2016.

l  Zhang J., Dong B., Jia J., Han L., Wang F., Liu C., Tian Z.Q., Tian Z.W., Wang D. and Zhan D., “Electrochemical buckling microfabrication”, Chemical Science, 7: 697-701, 2016.

l  Yang H., Wang Y., Chen X., Zhao X., Gu L., Huang H., Yan J., Xu C., Li G., Wu J., Edwards A., Dittrich B., Tang Z., Wang D., Lehtovaara L., Häkkinen H., Zheng N., “Plasmonic twinned silver nanoparticles with molecular precision”, Nature Communications, 7, 12809, 2016.

l  Wang D., Liu W. and Zhang H., “Superconvergent isogeometric free vibration analysis of Euler-Bernoulli beams and Kirchhoff plates with new higher order mass matrices”, Computer Methods in Applied Mechanics and Engineering, 286: 230-267, 2015.

l  Wang D., Song C. and Peng H., “A circumferentially enhanced Hermite reproducing kernel meshfree method for buckling analysis of Kirchhoff-Love cylindrical shells”, International Journal of Structural Stability and Dynamics, 15: 1450090, 2015.

l  Wang D., Sun M. and Xie P., “A boundary enhancement for the stabilized conforming nodal integration of Galerkin meshfree methods”, International Journal of Computational Methods, 12: 1550009, 2015.

l  Zhang H. and Wang D., “An isogeometric enriched quasi-convex meshfree formulation with application to material interface modeling”, Engineering Analysis with Boundary Elements, 60: 37-50, 2015.

l  Zhang H., Wu J. and Wang D., “Free vibration analysis of cracked thin plates by quasi-convex coupled isogeometric-meshfree method”, Frontiers of Structural and Civil Engineering, 9: 405-419, 2015.

l  Wang D. and Zhang H., “A consistently coupled isogeometric-meshfree method”, Computer Methods in Applied Mechanics and Engineering, 268: 843–870, 2014.

l  Wang D. and Chen P., “Quasi-convex reproducing kernel meshfree method”, Computational Mechanics, 54: 689–709, 2014.

l  Zhou S., Liu Y., Wang D., Wang K. and Yu S. “Upper bound shakedown analysis with the nodal natural element method”, Computational Mechanics, 54: 1111–1128, 2014.

l  Wu Y., Wang D. and Wu C.T., “Three dimensional fragmentation simulation of concrete structures with a nodally regularized meshfree method”, Theoretical and Applied Fracture Mechanics, 72: 89-99, 2014.

l  Zhang H., Wang D. and Liu W., “Isogeometric-meshfree coupled analysis of Kirchhoff plates”, Advances in Structural Engineering, 17: 1159-1176, 2014.

l  Wu C.T., Guo Y. and Wang D., “A pure bending exact nodal-averaged shear strain method for finite element plate analysis”, Computational Mechanics, 53: 877-892, 2014.

l  Wang D., Li L. and Li Z., “A regularized Lagrangian meshfree method for rainfall infiltration triggered slope failure analysis”, Engineering Analysis with Boundary Elements, 42: 51-59, 2014.

l  Wang D., Li X., Liu W. and Zhang H., “An ultra-accurate dynamic isogeometric analysis with higher order mass formulation”, Science China-Technological Sciences, 57: 1293-1309, 2014.

l  Zhou Z., Wang D. and Jiang Q., “Piezoelectric effect on the buckling of piezoelectric thin film with viscoelastic substrate”, Journal of Nanomechanics and Micromechanics, ASCE, 4: A4013004, 2014.

l  Wang D., Liu W. and Zhang H., “Novel higher order mass matrices for isogeometric structural vibration analysis”, Computer Methods in Applied Mechanics and Engineering, 260: 92-108, 2013.

l  Wang D. and Peng H., “A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates”, Computational Mechanics, 51: 1013-1029, 2013.

l  Wang D. and Li Z., “A twolevel strain smoothing regularized meshfree approach with stabilized conforming nodal integration for elastic damage analysis”, International Journal of Damage Mechanics, 22: 440459, 2013.

l  Wang D., Xie P. and Lu H., “Meshfree consolidation analysis of saturated porous media with stabilized conforming nodal integration formulation”, Interaction and Multiscale Mechanics, 6: 107-125, 2013.

l  Wang D., Xie P. and Fang L., “Consistent asymptotic expansion multiscale formulation for heterogeneous column structure”, Journal of Engineering Materials and Technology, ASME, 134: 031006, 2012.

l  Wang D., Zhang H. and Xuan J., “A strain smoothing formulation for NURBSbased isogeometric finite element analysis”, Science ChinaPhysics, Mechanics & Astronomy, 55: 132140, 2012.

l  Wang D. and Lin Z., “A comparative study on the dispersion properties of HRK and RK meshfree approximations for Kirchhoff plate problem”International Journal of Computational Methods, 9: 1240015, 2012.

l  Wang D. and Lin Z., “Dispersion and transient analyses of Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration for thin beam and plate structures”, Computational Mechanics, 48: 47-63, 2011.

l  Wang D. and Sun Y., “An efficient Galerkin meshfree formulation for shear deformable beam under finite deformation”, Theoretical & Applied Mechanics Letters, 1: 051010, 2011.

l  Wang D. and Sun Y., “A Galerkin meshfree formulation with stabilized conforming nodal integration for geometrically nonlinear analysis of shear deformable plates”, International Journal of Computational Methods, 8: 685-703, 2011.

l  Wang D., Li Z., Li L. and Wu Y., “Three dimensional efficient meshfree simulation of large deformation failure evolution in soil medium”, Science China–Technological Sciences, 54: 573-580, 2011.

l  Zhang C., Wang D. and Li T., “Orthogonal basic deformation mode method for zero-energy mode suppression of hybrid stress elements”, Applied Mathematics and Mechanics, 32: 83-96, 2011.

l  Wang D. and Xuan J., “An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions”, Computer Methods in Applied Mechanics and Engineering, 199: 2425-2436, 2010.

l  Wang D. and Lin Z., “Free vibration analysis of thin plates using Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration”, Computational Mechanics, 46: 703-719, 2010.

l  Wang D. and Fang L., “A multiscale method for analysis of heterogeneous thin slabs with irreducible three dimensional microstructures”, Interaction and Multiscale Mechanics, 3: 213-234, 2010.

l  Wang D., Sun Y. and Li L., “A discontinuous Galerkin meshfree modeling of material interface”, CMES: Computer Modeling in Engineering & Sciences, 45: 57-82, 2009.

l  Wang H.P. and Wang D., “Efficient meshfree computation with fast treatment of essential boundary conditions for industrial applications”, Journal of Engineering Mechanics, ASCE, 135: 1147-1154, 2009.

l  Wang D. and Chen J.S., “A Hermite reproducing kernel approximation for thin plate analysis with sub-domain stabilized conforming integration”, International Journal for Numerical Methods in Engineering, 74: 368-390, 2008.

l  Wang D. and Wu Y., “An efficient Galerkin meshfree analysis of shear deformable cylindrical panels”, Interaction and Multiscale Mechanics, 1: 339-355, 2008.

l  Wang D. and Lin T.H., “PQR model-based micromechanical analysis of hysteresis loops for single crystal fatigue: aspects of multi-axial loading, geometric effects and creep”, International Journal of Damage Mechanics, 17: 283-305, 2008.

l  Zhang C., Wang D., Zhang J., Feng W. and Huang Q., “On the equivalence of various hybrid finite elements and a new orthogonalization method for explicit element stiffness formulation”, Finite Elements in Analysis and Design, 43: 321-332, 2007.

l  Wang D. and Chen J.S., “A locking-free meshfree curved beam formulation with the stabilized conforming nodal integration”, Computational Mechanics, 39: 83-90, 2006.

l  Chen J.S. and Wang D., “A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates”, International Journal for Numerical Methods in Engineering, 68: 151-172, 2006.

l  Wang D., Dong S.B. and Chen J.S., “Extended meshfree analysis of transverse and inplane loading of a laminated anisotropic plate of general planform geometry”, International Journal of Solids and Structures, 43: 144-171, 2006.

l  Lin T.H. and Wang D., “Incremental extrusion and intrusion with incremental fatigue loadings on single crystals”, International Journal of Fatigue, 27: 1175-1178, 2005.

l  Chen J.S. and Wang D., “Extended meshfree method for elastic and inelastic media”, Lecture Notes in Computational Science and Engineering, 43: 17-38, 2005.

l  Chen J.S., Kotta V., Lu H., Wang D., Moldovan D. and Wolf D., “A variational formulation and a double-grid method for meso-scale modeling of stressed grain growth in polycrystalline materials”, Computer Methods in Applied Mechanics and Engineering, 193: 1277-1303, 2004.

l  Chen J.S., Wang D. and Dong S.B., “An extended meshfree method for boundary value problems”, Computer Methods in Applied Mechanics and Engineering, 193: 1085-1103, 2004.

l  Wang D. and Chen J.S., “Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation”, Computer Methods in Applied Mechanics and Engineering, 193: 1065-1083, 2004.

l  Wang D., Chen J.S. and Sun L.Z., “Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method”, Finite Elements in Analysis and Design, 39: 765-782, 2003.

 

Contact Address:

Dongdong Wang

Professor, Ph.D.

Department of Civil Engineering

Xiamen University

Xiamen, Fujian 361005, China

Email: ddwang@xmu.edu.cn

 

Baidu
sogou
Top